#### Aim:

Write a C Program to Implement Restoring Division Algorithm.

__Theory:__

**Restoring division:**

- Restoring division operates on fixed-point fractional numbers and depends on the following assumptions: The following division methods are all based on the form
*Q*= A/*M*where

*Q*= Quotient*A*= Numerator (dividend)*M*= Denominator (divisor).

#### Algorithm:

- Start
- Quotient = 0, Remainder =0 and Sign = 0
- Ask the user to enter two decimal numbers: n1, n2
- Convert their absolute values into binary and store them in arrays num1 and num2
- Two’s complement num2 and store as ncom
- Create a copy of num1 as ncopy
- If the product is negative, set sign = 1
- Shift left Remainder : ncopy; counter = 0
- Add ncom to Remainder
- Set LSB of ncopy as 0.
- If result is negative, restore the remainder
- Otherwise, Set LSB of ncopy as 1.

- If counter < bits in num1, Shift left Remainder : ncopy
- counter = counter + 1
- Repeat 9, 10 and 11 until all bits of num1 is traced
- Display final result as Sign, Remainder: ncopy
- End

#### Program:

#include<stdlib.h> #include<stdio.h> int acum[100]={0} ; void add(int acum[],int b[],int n); int q[100],b[100]; int main() { int x,y; printf("Enter the Number :"); scanf("%d%d",&x,&y); int i=0; while(x>0||y>0) { if(x>0) { q[i]=x%2; x=x/2; } else { q[i]=0; } if(y>0) { b[i]=y%2; y=y/2; } else { b[i]=0; } i++; } int n=i; int bc[50]; printf("\n"); for(i=0;i<n;i++) { if(b[i]==0) { bc[i]=1; } else { bc[i]=0; } } bc[n]=1; for(i=0;i<=n;i++) { if(bc[i]==0) { bc[i]=1; i=n+2; } else { bc[i]=0; } } int l; b[n]=0; int k=n; int n1=n+n-1; int j,mi=n-1; for(i=n;i!=0;i--) { for(j=n;j>0;j--) { acum[j]=acum[j-1]; } acum[0]=q[n-1]; for(j=n-1;j>0;j--) { q[j]=q[j-1]; } add(acum,bc,n+1); if(acum[n]==1) { q[0]=0; add(acum,b,n+1); } else { q[0]=1; } } printf("\nQuoient : "); for( l=n-1;l>=0;l--) { printf("%d",q[l]); } printf("\nRemainder : "); for( l=n;l>=0;l--) { printf("%d",acum[l]); } return 0; } void add(int acum[],int bo[],int n) { int i=0,temp=0,sum=0; for(i=0;i<n;i++) { sum=0; sum=acum[i]+bo[i]+temp; if(sum==0) { acum[i]=0; temp=0; } else if (sum==2) { acum[i]=0; temp=1; } else if(sum==1) { acum[i]=1; temp=0; } else if(sum==3) { acum[i]=1; temp=1; } } }

#### Execution:

Input: 15 7 Output: Enter the Number : Quoient: 0010 Remainder: 00001

#### Result:

Thus the Program for Restoring Division was executed Successfully.