Varun explained its friend Sanchit the algorithm of Euclides to calculate the GCD of two numbers. Then Sanchit implements the algorithm

int gcd(int a, int b) { if (b==0) return a; else return gcd(b,a%b); }

and challenges to Varun to calculate the gcd of two integers, one is a little integer and other integer has 250 digits.

Your task is to help Varun an efficient code for the challenge of Sanchit.

**Input format:**

- The first line of the input file contains a number representing the number of lines to follow.
- Each line consists of two number A and B (0 <= A <= 40000 and A <= B < 10^250).

**Output format:**

Print for each pair (A,B) in the input one integer representing the GCD of A and B.

**Constraints:**

1 <= n <= 1000

**Sample Input:**

2 2 6 10 11

**Sample Output:**

2 1

**Code:**

```
#include<iostream>
#include<string>
using namespace std;
int gcd(int a, int b)
{
if(b>a)
{
return gcd(b, a);
}
if (b == 0)
return a;
else
return gcd(b, a % b);
}
int main()
{
int t;
cin >> t;
while (t--)
{
int a;
string b;
cin >> a >> b;
if(a==0)
{
cout<<b<<endl;
continue;
}
int current_number = 0;
for (int i = 0; i < b.size(); i++)
{
current_number = ((current_number * 10) % a + (b[i] - '0') % a) % a;
}
cout << gcd(a, current_number) << endl;
}
}
```

Code language: C++ (cpp)